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A discrete stochastic process involving random amplification with additive noise is studied analytically. If
the non-negative random amplification fachois such thatb?)=1, whereg is any positive noninteger, then
the steady state probability density function for the process will have power law tails of thepfpim
~1/x#*1, This is a generalization of recent results fox B8<2 obtained by Takayasu, Sato, and Takayasu
[Phys. Rev. Lett79, 966(1997]. It is shown that the power spectrum of the time sexibecomes Lorentzian,
even when X 8<2, i.e., in the case of divergent varian¢81063-651X%99)10306-4
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A power law behavior of the distribution function is lim p(x,t)=p(x)~1xFT1 (4)
widely observed in naturgl]. Recently, Takayasu, Sato, and t—o0
Takayasu presented a general mechanism leading to the
power law distributiof2]. They analyzed a discrete stochas-or equivalently, the cumulative distribution
tic process which involves random amplification together
with additive external noise. They clarified necessary and P(=|x|)~1/x~. 5)
sufficient conditions to realize a steady power law fluctuation
with divergent variance using a discrete version of the linear They also made numerical simulations of Et) by em-

Langevin equation expressed as ploying a discrete exponential distribution fov(b), and
showed that the theoretical estimate of the relation between
x(t+1)=b(t)x(t)+f(t), (1) B and the parameters specifyiltg(b) [Eqg. (15) in Ref.[2]]

nicely fits with the simulation “even out of the range of

wheref(t) represents a random additive noise, &ft) isa  applicability, 3>2." They stated that “the reason for this
non-negative stochastic coefficient. They derived the followJucky coincidence is not clear,” although they pointed out at
ing time evolution equation for the characteristic functionthe same time that the power law distribution tails are a

Z(p.t), which is the Fourier transform of the probability generic property of Eq(1) [2]. In this Brief Report, the
densityp(x,t): following two statements will be presented.

(&) The theory of Ref[2] can be straightforwardly ex-
tended forg>2: If (b#y=1 holds for a positive noninteger

Z(p,t+1)= wa(b)Z(bp,t)db®(p), (2 B, then there exists a unique steady and stable solution of Eq.
0 (2,
whereW(b) is the probability density ob(t), and ®(p) is n
the characteristic function fdi(t). They showed that when Z(p)= Eo Aom(—1)2Mp2M—Clp|P+0(p?"*?), (6)
m=

(bPy=1 holds for 0<8<2, the second momexik>(t)) di-

verges ag—«, but Eq.(2) has a unique steady and stable _ .
solution where 2 is the largest even number that is smaller thgan

This Z(p) leads top(x)~1/xA"1.
B\ .
: — _a_ By... (b) When(b”)=1 for a nonintegeiB between 1 and 2,
t"_Tc Z(p,)=2(p)=1-conskp| ' ® the power spectral densifypSD of x(t) is Lorentzian, in-
creasing with the observation tinfeas

which yields the power law tails in the steady probability > X2 (1 )(b?)T
density 4 %o 71
ST ™ T 006y (1my) 2+ o’

for T>1, (7
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2 2 <f2
XOE<X (0)>+ m, 8
1
71 9

~ (b2 +In[1Kb)]"

From statementa), “the coincidence” found in Ref[2]
is naturally understandable. To proia, we assume the fol-
lowing form for Z(p):

1, (10

Z(p)=n§=:O anp”+|p|ﬁzo Chp",  ag

and substitute it into Eq2) in the limit t—oo. If ®(p) is an
even function(i.e., the distribution function of (t) is sym-
metric as assumed in Rdi2]], we can first prove thaa,
=0 because(b)#1. Also, ¢;=0 because(b?*1)=#1.
Thanks toa,,_,=0 and(b*™*1)#1, a,,,,=0 is derived.
Similarly, ¢,y 1=0 and(b#*2M* 1)+ 1 yield ¢, ;=0. We
can thus prove tha, andc, in Eq. (10) vanish for all odd
numbersn, i.e., Eq.(6) holds.[Note that thenth moment
(x"(t)) with n> g diverges not only for even numbarbut
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1 (= .
pPX)=5_ fﬁme'XPZ(P)dp (12

[B]+1 times, whergg] is the largest integer that is smaller
than 8. Thus we obtain the asymptotic expansion as
PO~ [ ~(#7 [ et 1412a
~ x|~ (B-[B]), (13
wherel is the y function.

To prove statement), we note that the two-time corre-
lation function is rigorously obtained from EL):

d(7,0)=(X(t+ 7)x(1))=(x3(t) )(b)7, (14)
where
1—(b?)!
(x3(1))=(b?)(x*(0)) + %0‘2)- (15

If 1<B<2, we have a relationQ(b)<1<(b?) because

also for odd number which corresponds to the vanishing cog,o functionG(y)=(b?) satisfiesG(0)=1 andG"(y)>0

efficienta,, .] Taking exactly the same procedures as in Ref

case of 3>2, we have a finite variance but higher order
momentsyx"(t)), with n> g, diverge ag—o.

To derive the probability densitp(x), we only need to
assume that akth derivatives ofZ(p) satisfy the boundary
condition

; > g {2]. Then ¢ increases with, but decays withr as ~e~ 770
[2], we can prove that this solution is unique and stable. Ior any fixed value oft (

Debye-type relaxation with the
relaxation time

1

N[ 1KbY]" (16)

To—

Since the correlation function depends on bethndt, the
Wiener-Khinchin relation cannot be used to obtain the PSD.
Defining the PSD which depends on the observation fime
as

lim d*z(p)/dpk=0. (11

p—Ex

Using Eq.(11), we can partially integrate the expression

T 2 T T-r
S(w,T)E<f e'“tx(t)dt >/T=2 Re[J' drj dte"‘”(x(t+7-)x(t)>+/T, 17
0 0 0
|
and using¢(7,t) obtained above, we arrive at expression _ ) (1/7g)
(7). The spectrum is of 1f type for f> 1/, and flat forf S(w)=lim S(w,T)=2(x >(1/To)—2+w2' (20
T

<1/7,. Equation(7) implies that the power increases expo-
nentially with the observation tim&, which corresponds to
the divergent behavior of the varian¢g?(t)). [We have
neglected the case<0B8<1, where even the average »f
diverges agx(t))=(b)(x(0)) becausdb)>1.]

When 8>2, both 0<(b)<1 and 0<(b?<1 hold, and
results are rather trivial:

Thus, as far as the PSD is measured, we cannot observe any
singular aspect, higher order singularities being hidden.

The stochastic process described by ED. generally
leads to the power law behavipfx)~ 1/x#*1, while it also
yields a Lorentzian spectru® )= 1/ (1/7)?>+ w?]. A col-
ored noise, or X fluctuation, whose PSD is proportional to
1l/w®, has attracted much attention sincé hbise was dis-

<x2>E lim (xz(t))= ;2“2), (18 covered several decades 4. Such a power law behavior
t—oo 1-(b%) of the PSD is also observed widely in nature, and these two
power laws, one in the probability density and the other in
the PSD, are sometimes discussed togdt®erTherefore it
d(1)=lim ¢(7,t)=(x>)(b)", (19 is interesting to know whether an extremely long time scale
t—oo

7 can be involved in the present stochastic process. Because,
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in that case, the observation tifiewhich relates to the low the lat-ter case, we obtain ~ 1/(e+ §)> 1. The exponential
frequency cutoffwg=27/T, cannot reach this time scale, or Poisson distribution fow/(b) does not lead to such a long
then a 112 fluctuation; that isS(w)~ 1/w? (for ®=wy) is  time constant. One example of largeis obtained by choos-
observedpractically. ing W(b) to be a narrowly peaked distribution having an
One can immediately see that the time constgnbr ;  average which is slightly smaller than unity and a second
becomes large in very limited cases. First, the average of moment slightly larger than unity.
should be close to unity, i.e(b)=1— € with 0<e<1. Then As pointed out above, it should be noted that a stochastic
79 becomes~ 1/e>1. Furthermore, in the case B>2, we  process whose stationary density function has power law
need(b?) smaller than unity, while in the case of<]@ tails will not necessarily exhibit a power law behavior in the
<2, the conditionb?)=1+ & with 0< §<1 is necessary. In PSD.
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